Assignment: Brain Imaging Techniques

Assignment: Brain Imaging Techniques
Assignment: Brain Imaging Techniques
Permalink:
Assignment: Brain Imaging Techniques
Positron Emission Tomography
Many investigators use positron emission tomography (PET) scans in their studies of brain func- tion because the images produced by PET are much more detailed and, hence, provide more infor- mation than do SPECT scans. In the PET technique, the subject is injected with a radioactive isotope. A number of radioisotopes, including oxygen and carbon, are used in PET scans, but fluo- rine is often the most clinically relevant (Lee et al., 2011). Remember that blood flow in the brain is increased in those regions that are most active. This means that active regions contain the most radioactive isotopes and release the most radiation. A detection device is placed around the sub- ject’s head while the subject is performing a task, such as looking at a word or pointing to a stimu- lus. As the subject participates in the task, certain brain areas become active, and blood flow increases in those areas. Positrons that are emitted from the radioactive isotopes collide with electrons and are annihilated, producing two photons (or gamma rays) that go off in opposite directions and are measured by the detection device. The gamma ray detection device sends the information to a computer, which produces detailed images of the areas of activity in the brain. Studies that use PET technology are producing a wealth of information about how the brain works. More recently, the PET technique has been modified to allow for the study of specific chemicals in the brain (Torigian et al., 2013).
We will examine many more applications of PET imaging in behavioral research in later chapters of this book. The information to be gained from PET studies is important, but unfortunately it is an extremely costly technique. For example, the radioactive isotopes used in PET are very expensive to produce. Very few radioactive isotopes release positrons; most release photons, which makes SPECT a cheaper technique to use. Also, using these isotopes puts the subject and experimenter at considerable health risk, and their use is limited by federal guidelines, which does not make repeated trials on the same subject feasible. PET scans are better at localizing brain functions than are SPECT scans because two photons are produced with each positron emitted, making localiza- tion more precise. However, like SPECT, PET cannot accurately record the time course of many cognitive activities. It takes minutes to make a PET image, and most cognitive functions occur in less than a second.
Functional Magnetic Resonance Imaging
Developed in 1990 by Seiji Ogawa and his colleagues at Bell Laboratories, functional magnetic resonance imaging (fMRI) is a measurement technique that is based on conventional magnetic resonance imaging (MRI) technology (Song, 2012). Whereas MRI is used to produce detailed, static images of the brain, fMRI permits measurement of blood flow through a brain region, which is an indicator of activity in that region. The fMRI technique is designed to detect the differences between oxygenated and deoxygenated blood, based on the fact that hemoglobin carrying oxy- gen has different magnetic properties than deoxygenated hemoglobin. The strange thing about neurons is that they increase their glucose consumption when active, but not their oxygen con- sumption. This means that when blood flow through an active brain region increases, oxygenated hemoglobin builds up in the blood vessels. Functional MRI detects this increase in blood oxygen and thus is able to pinpoint active brain regions.
Photo 1.11 is an fMRI image of the brain of a 32-year-old woman after a massive stroke; the image shows the amount of blood flow received by areas of the brain. As you can see, the images pro- duced by fMRI are as detailed as PET scans, and fMRI has many advantages over PET. For example, the fMRI technique is noninvasive and does not require administration of radioactive chemicals,
Simon Fraser/Science Source
Photo 1.11 This is the brain scan of a 32- year-old woman after she had a stroke. The green and blue areas are receiving normal blood flow, while yellow, red, and black are receiving abnormal blood flow.
wiL81028_01_c01_001-030.indd 20 7/10/13 12:24 PM
CHAPTER 1Section 1.6 Brain Imaging Techniques
which means that subjects can be tested repeatedly without risk of exposing the subjects to radiation. Functional MRI is also a less expensive technique to use than PET. Moreover, fMRI has a time lag of about 1 second (Stehling, Turner, & Mansfield, 1991), which is far superior to that of PET. EEG and MEG are capa- ble of recording brain activity within milliseconds of its occurrence and, hence, provide a more accurate measure of the time course of brain activity than does fMRI. However, fMRI is much better for localizing a specific function in the brain than are EEG or MEG.
One concern when performing fMRI studies is whether or not to compare scanners of different strength levels (Glover et al., 2012). For fMRI experiments, the sub- ject’s entire body must be placed into the scanner, which is shaped like a narrow tube. As a result, some subjects become claustrophobic and uncomfortable during fMRI studies. Any movement by the subject destroys the image being produced, so the subject must lie very still, which increases the subject’s dis- comfort and renders impossible the study of behaviors involving movement of the head, such as speaking. The type of study conducted in the fMRI scanner is also limited by the high magnetic field in the scanner. For example, the instruments used to present stimuli to subjects in PET studies cannot be used in the magnetic environment of the fMRI scanner.
Table 1.2: Comparison of brain recording and brain imaging techniques
Technique Benefits Drawbacks
EEG Noninvasive; relatively low cost of equipment; accurately records brain activity within milliseconds
Difficult to localize exact source of electrical activity; some distortion as electrical currents pass through skull
MEG Noninvasive, no distortion as magnetic fields pass through bone; accurately records brain activity within milliseconds
Expensive equipment; does not allow precise localization of brain activity; cannot pick up deep signals in the brain
SPECT Better than EEG or MEG in localizing brain activity; cheaper than PET imaging
Requires administration of a radio- isotope; time lag > 20 seconds; can- not be used in studies of cognition
PET Better localization of brain activity than SPECT; can be used to localize specific neurotransmitter receptors in the brain
Assignment: Brain Imaging Techniques
Extremely expensive radioisotopes required; some health risk associ- ated with radioisotopes; time lag > 1 min
fMRI Noninvasive; precise localization of brain activity; less expensive than PET; time lag < 1 second, better than PET Time lag does not permit study of cognitive processes, subject must remain very still during imaging Positron Emission Tomography Many investigators use positron emission tomography (PET) scans in their studies of brain func- tion because the images produced by PET are much more detailed and, hence, provide more infor- mation than do SPECT scans. In the PET technique, the subject is injected with a radioactive isotope. A number of radioisotopes, including oxygen and carbon, are used in PET scans, but fluo- rine is often the most clinically relevant (Lee et al., 2011). Remember that blood flow in the brain is increased in those regions that are most active. This means that active regions contain the most radioactive isotopes and release the most radiation. A detection device is placed around the sub- ject’s head while the subject is performing a task, such as looking at a word or pointing to a stimu- lus. As the subject participates in the task, certain brain areas become active, and blood flow increases in those areas. Positrons that are emitted from the radioactive isotopes collide with electrons and are annihilated, producing two photons (or gamma rays) that go off in opposite directions and are measured by the detection device. The gamma ray detection device sends the information to a computer, which produces detailed images of the areas of activity in the brain. Studies that use PET technology are producing a wealth of information about how the brain works. More recently, the PET technique has been modified to allow for the study of specific chemicals in the brain (Torigian et al., 2013). Assignment: Brain Imaging Techniques We will examine many more applications of PET imaging in behavioral research in later chapters of this book. The information to be gained from PET studies is important, but unfortunately it is an extremely costly technique. For example, the radioactive isotopes used in PET are very expensive to produce. Very few radioactive isotopes release positrons; most release photons, which makes SPECT a cheaper technique to use. Also, using these isotopes puts the subject and experimenter at considerable health risk, and their use is limited by federal guidelines, which does not make repeated trials on the same subject feasible. PET scans are better at localizing brain functions than are SPECT scans because two photons are produced with each positron emitted, making localiza- tion more precise. However, like SPECT, PET cannot accurately record the time course of many cognitive activities. It takes minutes to make a PET image, and most cognitive functions occur in less than a second. Functional Magnetic Resonance Imaging Developed in 1990 by Seiji Ogawa and his colleagues at Bell Laboratories, functional magnetic resonance imaging (fMRI) is a measurement technique that is based on conventional magnetic resonance imaging (MRI) technology (Song, 2012). Whereas MRI is used to produce detailed, static images of the brain, fMRI permits measurement of blood flow through a brain region, which is an indicator of activity in that region. The fMRI technique is designed to detect the differences between oxygenated and deoxygenated blood, based on the fact that hemoglobin carrying oxy- gen has different magnetic properties than deoxygenated hemoglobin. The strange thing about neurons is that they increase their glucose consumption when active, but not their oxygen con- sumption. This means that when blood flow through an active brain region increases, oxygenated hemoglobin builds up in the blood vessels. Functional MRI detects this increase in blood oxygen and thus is able to pinpoint active brain regions. Photo 1.11 is an fMRI image of the brain of a 32-year-old woman after a massive stroke; the image shows the amount of blood flow received by areas of the brain. As you can see, the images pro- duced by fMRI are as detailed as PET scans, and fMRI has many advantages over PET. For example, the fMRI technique is noninvasive and does not require administration of radioactive chemicals, Simon Fraser/Science Source Photo 1.11 This is the brain scan of a 32- year-old woman after she had a stroke. The green and blue areas are receiving normal blood flow, while yellow, red, and black are receiving abnormal blood flow. wiL81028_01_c01_001-030.indd 21 7/10/13 12:24 PM

Struggling to find relevant content or pressed for time? – Don’t worry, we have a team of professionals to help you on
Assignment: Brain Imaging Techniques
Get a 15% Discount on this Paper
Order Now
Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
Sign up, place your order, and leave the rest to our professional paper writers in less than 2 minutes.
step 1
Upload assignment instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
s
Get personalized services with MyCoursebay
One writer for all your papers
You can select one writer for all your papers. This option enhances the consistency in the quality of your assignments. Select your preferred writer from the list of writers who have handledf your previous assignments
Same paper from different writers
Are you ordering the same assignment for a friend? You can get the same paper from different writers. The goal is to produce 100% unique and original papers
Copy of sources used
Our homework writers will provide you with copies of sources used on your request. Just add the option when plaing your order
What our partners say about us
We appreciate every review and are always looking for ways to grow. See what other students think about our do my paper service.
Strategic Management
Thanks for the help, really appreciate it
Customer 452821, June 26th, 2022
Social Work and Human Services
Thank you for the great job
Customer 452469, February 3rd, 2021
Social Work and Human Services
Excellent Work!
Customer 452587, November 30th, 2021
Human Resources Management (HRM)
Thanks for your support.
Customer 452701, April 24th, 2023
Social Work and Human Services
Great Work!
Customer 452587, August 31st, 2021
Nursing
Great work. thank you again!
Customer 452707, August 7th, 2022
Other
GREAT
Customer 452813, June 25th, 2022
Other
Thank you for a well written paper!!!
Customer 452557, January 19th, 2022
Other
GREAT JOB THANK YOU.
Customer 452813, July 18th, 2022
Other
GOOD
Customer 452813, July 5th, 2022
Social Work and Human Services
Awesome Work!
Customer 452587, October 20th, 2021
Psychology
The paper is well written and professional. I highly recommend
Customer 452485, August 22nd, 2021
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat

Good News ! We now help with PROCTORED EXAM. Chat with a support agent for more information